摘要
布尔时间序列中的关联规则挖掘较难处理,因为多数关联规则仅挖掘不同事务共同出现的规则,难以体现同一事件在不同时间内动态变化间的关联性.鉴于此,提出一种新的关联规则挖掘框架,利用常量化表示布尔数据的时间属性,结合聚类算法和关联分析,提高规则的支持度,从而解决布尔时间序列数据在关联规则挖掘中的时间值表示问题,并使用多种指标评价规则与传统算法比较.在真实的中风病预后好转数据预测中验证了所提出算法的有效性.
-
单位北京中医药大学东直门医院; 北京交通大学