摘要

船舶图像具有大规模、多样性等变化特点,传统船舶图像检索机制难以获得高精度检索结果。为了获得理想的船舶图像检索结果,设计了基于机器学习的大规模船舶图像检索机制。首先分析当前船舶图像检索研究进展,阐述船舶图像检索基本流程,然后采集不同类型的船舶图像检索特征,选择最优的船舶图像检索特征作为机器学习算法的输入、船舶图像类别作为输出,最后通过机器学习算法的训练建立船舶图像检索的分类器,并与其它船舶图像检索机制进行了对照测试。测试结果表明,本文机制可以满足大规模船舶图像检索要求,船舶图像检索正确率要高于对比船舶图像检索机制,可以更快找到用户需要的船舶图像,获得了令人满意的船舶图像检索结果。

  • 单位
    南京城市职业学院