摘要

LiDAR点云数据存在数据量大、不易识别、不易处理的问题,为了解决上述问题,需要对点云数据进行分类处理。针对点云分类方法存在精度不高、处理过程复杂等难题,本文提出了一种基于高度差值的二次导数的建筑物、植被的点云分类方法,能够高效、准确地将各类点云分离。利用该方法分离点云数据,首先通过Terra Solid软件对原始LiDAR点云数据进行初步处理,去除噪点并提取出地表点云,然后利用规则建筑和不规则植被高度差异上的二次导数不同,提取出可能是建筑物或植被的点,并利用高斯偏差估计模型为建筑物、植被点的分类提供阈值,最后利用断点统计模型将建筑物、植被点云补充完整。为证明这种方法的可行性和有效性,使用AutzenStadium地区的LiDAR点云数据进行点云分类试验,结果表明,该方法具有可行性好、分类效果好、处理自动化等优势。

全文