摘要

为了提高光伏出力的预测精度,提出了一种将自适应噪声完备集成经验模态分解(CEEMDAN)算法与改进的长短时记忆(LSTM)神经网络相结合的短期光伏功率预测模型。首先,利用CEEMDAN算法对光伏功率序列进行分解,得到子序列分量。然后,使用改进的LSTM神经网络对各个子序列分量分别进行预测,用粒子群(PSO)算法优化LSTM神经网络隐藏层神经元个数、学习率与训练次数,同时使用注意力机制优化训练过程中的概率分配。最后,叠加各分量预测结果,得到最终的预测值。算例分析表明,所提模型的3个预测评估指标MAE、RMSE、R2均为最佳,验证了所提模型的优越性。

全文