摘要
讨论了统计收敛的两个基本问题:1)在第一可数的拓扑空间上,统计收敛和几乎处处收敛等价的,反之,如果统计收敛和几乎处处收敛等价,能否导出这个拓扑空间一定是第一可数的?2)超滤子收敛是否和依统计测度收敛等价?通过构造两个例子,给出了这两个问题以否定的答案.此外,引入有界线性算子序列在弱算子拓扑意义下的统计收敛,证明了一个Connor-Ganichev-Kadets型定理,即证明了对一个可分的Banach空间X,X*可分的当且仅当对任意有界的弱统计收敛的■(X)-值序列(Tn),都存在一个弱收敛的有界线性算子序列(Sn)使得{n∈N:Tn=Sn}具有自然密度1.
- 单位