摘要
基于2013—2018年哈尔滨市气象数据、大气污染物数据和细颗粒物(PM2.5)中金属成分数据,采用机器学习方法探索大气PM2.5中金属浓度预测模型,并选择最优模型进行污染物浓度预测。结果表明,多元线性回归(MLR)、人工神经网络(BP-ANN)、支持向量机(SVM)和随机森林(RF)4种模型中,RF对大气PM2.5中5种金属[锑(Sb)、砷(As)、铅(Pb)、镉(Cd)、铊(Tl)]的浓度预测效果最佳,在训练集和测试集中表现均较稳定,其中相关系数(r)均> 0.7,平均绝对误差(MAE)和均方根误差(RMSE)数值较小。RF在大气PM2.5中金属浓度预测上具有较好的表现,可在缺乏监测和实验数据的情况下,实现对大气颗粒物中金属浓度的快速预测,为全面了解颗粒物中金属污染特征提供数据基础。
-
单位暨南大学; 公共卫生学院; 哈尔滨市疾病预防控制中心