三维形状分割是三维形状分析中的一个重要问题.针对单一特征对同一类模型分割结果存在较大差异的问题,提出一种基于学习的多特征融合的三维形状分割方法.首先利用过分割方法将三维模型分割成多个子面片,分别对每个子面片提取多种几何特征;然后将几何特征作为低层特征输入深度神经网络模型,通过学习生成高层特征;最后基于该高层特征用高斯混合模型的方法得到聚类中心,利用图割得到最后分割结果.在普林斯顿标准数据集和COSEG数据集上的实验结果表明,与传统分割方法相比,该方法具有较好的一致性分割结果.