摘要

为了解决序列到序列模型中编码器不能充分编码源文本的问题,构建一种基于双编码器网络结构的CGAtten-GRU模型。2个编码器分别使用卷积神经网络和双向门控循环单元,源文本并行进入双编码器,结合2种编码网络结构的输出结果构建注意力机制,解码器端使用GRU网络融合Copy机制和集束搜索方法,以提高解码的准确度。在大规模中文短文本摘要数据集LCSTS上的实验结果表明,与RNN context模型相比,该模型的Rouge-1、Rouge-2和Rouge-L分别提高0.1、0.059和0.046。

全文