摘要

动作识别是计算机视觉领域的一项重要任务,主要有基于RGB视频和人体骨架两种数据模态的领域,主流方法分别是3D卷积神经网络和图卷积神经网络。针对视频和人体骨架两种数据模态的不同特点,设计了双分支网络分别对两种数据模态进行建模。对于人体骨架数据,基于自注意力机制设计了图卷积神经网络,该算法能在基于骨架的动作识别任务中达到先进的性能。对于视频数据,采用3D卷积网络进行特征提取。同时,利用深监督方法对两种数据模态的中间特征进行监督,提高两种数据特征的耦合度,进一步提高网络效率。这种算法的网络结构简单,在NTU-RGBD60(CS)数据集上仅用3.37×107的参数量可达到95.6%的精度。