摘要
大量分布式能源站的出现以及电动汽车的普及,给电力系统的安全、经济运行带来影响的同时,传统的负荷预测方法也面临挑战。针对这个问题,提出了利用鲸鱼算法优化最小二乘支持向量机(Whale Optimization AlgorithmLeast Squares Support Vector Machine, WOA-LSSVM)进行短期电力系统负荷预测。利用鲸鱼算法全局寻优能力强、收敛速度快的优点,弥补最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)选参的盲目性,提高LSSVM的负荷预测精度。采用WOA-LSSVM对2013年浙江某地区历史负荷数据预测未来1 d的负荷,并与粒子群优化最小二乘支持向量机模型和标准LSSVM模型预测结果对比。结果表明,基于鲸鱼优化LSSVM的短期负荷预测具有较高的预测精度,相对误差较小。
- 单位