摘要

针对在肝病多分类识别中分类精度较低的问题,提出一种基于多特征融合和ELM的肝病多分类识别方法。从肝脏超声图像中选定感兴趣区域,分别对其提取LBP特征、GLCM特征和Gabor特征,将得到的三种特征进行融合,得到鲁棒性更强的特征,通过超限学习机进行分类。实验结果表明,新提出的方法可以有效提高肝病多分类识别的识别率,并且时间效率较高,有助于肝病的临床诊断。