摘要
智能交通信号控制技术是缓解交通拥堵的重要手段。为解决传统强化学习算法应用到连续多交叉口的局限性问题,提出了1种基于上下层神经网络的连续交叉口交通信号控制模型。控制模型由下层神经网络选择当前状态下可能的最优控制策略,再由上层神经网络根据各路口车均延误进行二次调整,将最终控制策略应用到多交叉口的相位配时中。以典型连续3个交叉口为例,通过SUMO仿真平台对模型进行仿真验证,在低与高饱和度下,该控制模型分别对车均延误降低了23.6%和26%,排队长度降低了8.4%和9.4%。实验数据表明,该模型可有效提高连续交叉口道路通行能力,为缓解城市交通拥堵提供了1种有效技术手段。
- 单位