基于最优传输的层次化图核

作者:马凯; 黄硕; 张道强*
来源:模式识别与人工智能, 2021, 34(12): 1085-1092.
DOI:10.16451/j.cnki.issn1003-6059.202112002

摘要

已有的图核大多关注图的局部属性,利用局部的拓扑特征构建图的相似性度量,忽略图的层次结构信息.为了解决这个问题,文中提出基于最优传输的层次化图核.首先,将每个图表示成层次化的图结构.在层次化图结构构建过程中,利用K-means聚类算法构造每层图的节点,节点间的概率连接作为图的边.然后,利用带有熵约束的最优传输计算两图的层次结构上每层图之间的最优传输距离.最后,基于最优传输距离计算基于最优传输的层次化图核.在6个真实图数据集上的实验表明,文中方法可提升分类性能.