摘要
基于梯度下降法的传统人工神经网络瞬变电磁反演方法计算效率低,不能保证全局收敛。为了解决上述问题,提出一种在线惯序极限学习机(online sequential extreme learning machine, OSELM)的瞬变电磁反演方法。该方法针对瞬变电磁法所获取的高维勘探数据进行建模反演,首先,通过随机设定隐层参数(输入权值和偏差)来简化模型的学习过程;然后,将测试得到的预测样本加入训练样本中,作为下一次的更新信息,建立在线贯序极限学习机预测模型,从而最大限度提高反演精度;最后,设计了两个经典的瞬变电磁层状地电模型并进行了拟二维地电模型的反演。反演结果表明,该方法能够较好地解决瞬变电磁法高维数据非线性建模的反演问题,同时相较极限学习机(extreme learning machine, ELM),非线性反演方法具有更加准确的反演结果、更好的泛化能力以及更高的计算效率,为神经网络在地球物理反演中的应用提供了新思路。
-
单位输配电装备及系统安全与新技术国家重点实验室; 重庆大学