摘要

最近的研究表明,度量学习中的深度特征匹配方法,结合大规模、多样化的训练数据,可以显著增强人员再识别的泛化能力。然而,许多现有的方法会产生大量的内存和计算成本,如分类参数或类记忆学习等。为解决上述问题,提出了一种新的基于相关性图采样(Correlation graph sampler,CGS)的泛化行人重识别算法,CGS的基本思想是在训练开始时使用局部敏感哈希函数(Locality-Sensitive Hashing,LSH)和特征度量为所有类构造最近邻关系图。这确保了每一小批训练样本由随机选择的基类和与基类具有相似性的近邻类组成,以提供信息量大且具有挑战性的学习示例,提高行人重识别模型的判别性学习能力。CGS的采样原理会受主干网提取的特征质量影响,因此CGS采样能力会随着主干网的训练而增强,具有可学习性。通过在大规模数据集(包括CUHK03、Market-1501和MSMT17)上交叉评估该方法,广泛的实验结果证实了此方法的有效性,并展示了其在行人重识别应用中的潜力。