基于改进Faster R-CNN的电厂雨排口污染物泄漏检测

作者:彭道刚*; 王永坤; 周洋; 戚尔江; 高义民
来源:电子测量与仪器学报, 2022, 36(02): 40-48.
DOI:10.13382/j.jemi.B2104478

摘要

针对监控图像中电厂雨排口出现的废弃油污泄漏问题,提出一种基于改进Faster区域卷积神经网络(Faster R-CNN)的电厂雨排口污染物泄漏检测算法。改进Faster R-CNN检测算法首先使用ResNet-50作为主干网络,在此基础上构建多尺度特征图金字塔结构(FPN),实现高层语义和低层语义之间的信息融合,提高了检测精度;其次采用CIoU损失和DIoU-NMS方法,提高Faster R-CNN中边框回归的准确度;最后引入Focal Loss损失函数,解决了区域建议网络(RPN)生成的锚点冗余导致R-CNN阶段出现正负样本不均衡问题。实验结果表明,此改进算法在真实样本中表现良好,平均准确率达到90.2%,与原Faster R-CNN算法相比较,准确率提高,误报率和漏报率明显下降,可有效应用于实际生产环境中。

全文