摘要
虚拟学习社区是传统教育突破空间资源限制形成的便捷性学习环境,其中意见领袖是构成社区信息通路的重要角色,对其他用户有强大的影响力。为了准确识别社区中的意见领袖,构建出虚拟学习社区网络,分析各用户的中心性和社会网络角色特征,选取入度、出度、介数、特征向量中心性、用户活跃度、用户帖子转发量、用户帖子评论量等七个特征值作为筛选条件,结合基于K-means的用户聚类算法,提出基于K-means算法的意见领袖识别模型。最后,将该识别模型应用于某虚拟社区,根据各个聚类子类的特征向量,提取理论意义上的意见领袖集合。实验证明,获取意见领袖集合具有很高的准确性,识别出的意见领袖均处于中心者或桥梁位置,占据着社会网络的优势位置,在虚拟社区中承担着核心或中介等特殊作用。
- 单位