摘要
针对传统盲源分离(BSS)算法采用固定步长难以同时兼顾收敛速度和稳态误差的难题,采用等变自适应盲源分离(EASI)算法,提出了一种基于分离指标的变步长等变自适应盲源分离算法(VS-SI)。该算法利用EASI收敛条件,构造表征信号分离程度的分离指标,并设计带遗忘因子的更新算法,以减小历史数据误差的影响,实现分离指标的自适应计算,并采用一个非线性单调递增函数实现步长的自适应调节。通过与固定步长的自然梯度算法(FS-NG)、固定步长的EASI算法(FS-EASI)、步长指数衰减算法(EDS)和基于权重正交约束变步长算法(AS-WO)的性能进行对比,结果表明,在无噪声和有噪声两种情况下,提出算法均有较快的收敛速度,最终性能指标分别减小了15%和20%以上,同时兼顾稳态误差和收敛速度,具有较好的数值鲁棒性。
-
单位西安交通大学机械制造系统工程国家重点实验室