摘要
目标检测模型在电子元件生产环境中的实时检测能力不佳,为此采用GhostNet替换YOLOv5的主干网络.针对电子元件表面缺陷存在小目标及尺度变化较大的目标的情况,在YOLOv5主干网络中加入坐标注意力机制,在避免大量计算资源消耗的前提下增强感受野,将坐标信息嵌入通道注意力中以提升模型对目标的定位.使用加权双向特征金字塔网络结构替换YOLOv5特征融合模块中的特征金字塔网络(FPN)结构,提升多尺度加权特征的融合能力.在自制缺陷电子元件数据集上的实验结果表明,改进的GCB-YOLOv5模型平均精度达到93%,平均检测时间为33.2 ms,相比于原始YOLOv5模型,平均精度提高了15.0%,平均时间提升了7 ms,可以同时满足电子元件表面缺陷检测精度与速度的需求.
- 单位