摘要
为解决少样本朝鲜语古籍文字识别精度低的问题,提出了一种基于迁移学习的少样本文字识别方法.首先提出了一种结合传统数据增强和条件深度卷积生成对抗网络的数据增强方法,以此扩充朝鲜语古籍文字图像的训练样本数.其次,将富样本集预训练得到的模型迁移到少样本数据集的学习任务中,以此实现少样本的朝鲜语古籍文字识别.实验结果表明,提出的数据增强方法能够满足模型预训练和少样本的学习要求,且VGG16、ResNet18和ResNet50 3种网络模型在测试集上均获得良好的识别性能,其中ResNet50的识别准确率最高(99.72%).因此,该方法可有效解决小样本的朝鲜语古籍文字识别问题,并可为其他语种的小样本文字识别提供参考.
- 单位