摘要

在实时视频图像车辆目标检测时,为了克服行进中车辆背景噪声和阴影带来的准确率低、漏检率高等问题,提出一种时空融合和内外标记的分水岭车辆检测算法。首先,通过相邻视频三帧差法得到的时域运动变化信息结合Canny算子的得到的边缘图像相结合,得到时域掩模图像。然后,利用文中提出的基于二次重构、内外区域标记、梯度修正的分水岭空域算法对运动区域及其周围区域进行分割,解决了一般分水岭算法的过分割现象。最后,将得到的结果进行投影,以提高运动状态下车辆的检测精度。实验结果表明,在车辆背景噪声和阴影的影响下,该算法的检测效果仍然较好,车辆漏检率降低到4.90%,算法的准确性、鲁棒性和适应性较好。