本文基于多时相Landsat 8 OLI数据,进行综合光谱、植被指数的特征提取与特征选择的方法研究。通过分析光谱与植被指数特征时序变化,提取最佳时相光谱,构建小麦提取特征;采用基于重要性与Pearson相关性的随机森林特征选择算法优选特征。结果表明:利用优选特征分类时,总体精度为89.78%,小麦分类精度为98.33%;与优选前特征的分类结果相比,精度分别提高了2.96%、2.55%;基于重要性与Pearson相关性的随机森林特征选择提高了分类精度和分类器工作效率。