摘要
本研究分别应用数值模式及机器学习模型对兰州市2019年7月近地面臭氧浓度进行模拟,以对比不同方法下模拟效果的差异.其中,数值模式部分选用了3种不同的化学机理(CBMZ、RADM2、CB06r3),结果显示CBMZ化学机理模拟效果优于其他2种化学机理,RADM2高估了兰州市近地面臭氧浓度,CB06r3则有些低估.机器学习部分则选用了两种模型(XGBoost、PSO-BP),结果表明在缺少大气污染物排放清单的情况下,仅使用气象数据,无论是单个站点还是空间分布,2种机器学习模型均表现较好,且XGBoost模型在模拟近地面臭氧空间分布上表现更优.整体来看,2种机器学习模型相较于数值模式计算速度更快,但受其输入数据的影响较明显,对于更高空间分辨率的模拟研究及污染过程分析仍然需要依靠数值模式.因此,应该根据不同的需求及数据条件选择更合适的方法进行近地面臭氧模拟.
- 单位