引汉济渭工程调水区月径流预报模型研究

作者:李静; 黄强; 杨元园*; 黄生志; 刘登峰; 孟二浩
来源:西安理工大学学报, 2021, 37(03): 338-344.
DOI:10.19322/j.cnki.issn.1006-4710.2021.03.005

摘要

针对各预报模型预报结果精度评价不统一的现状,考虑径流具有非线性、突变及非平稳性等特点,本文构建了包含均方根误差(RMSE)、平均绝对百分误差(MAPE)和Nash效率系数(NSE)三项指标的综合评价系统,对自回归滑动平均模型(ARMA)、人工神经网络模型(ANN)和支持向量机模型(SVM)在径流汛期和非汛期内进行了预报精度评价。结果表明:(1)单一评价指标下,ARMA模型与SVM模型预报结果精度相近,而综合评价系统表明,SVM模型预报精度优于ARMA模型;(2)三种模型在非汛期预报精度均高于汛期预报精度,SVM预报效果均最好。将径流进行分割后预报,预报精度可提高。本研究获得了可靠性和精度较高的月径流预报模型,可为工程水资源高效配置提供理论和技术支撑。

全文