利用图像处理和卷积神经网络(CNN)搭建轮胎花纹结构与轮胎花纹噪声值之间的数学模型,分别采用CNN模型和BP神经网络对轮胎花纹噪声值进行预测,并对比预测精度。结果表明:采用CNN模型,轮胎花纹噪声的预测值与实测值的平均绝对误差为0.591 dB,平均相对误差为0.81%;采用BP神经网络,轮胎花纹噪声的预测值与实测值的平均绝对误差为0.713 dB,平均相对误差为0.95%;相较于BP神经网络,CNN模型对轮胎花纹噪声值的预测精度更高。