基于视觉特性的LCD显示器光谱特征化方法

作者:麻祥才; 肖颖; 钱志伟; 王东东; 王晓红*; 李贤峰; 张大伟
来源:包装工程, 2020, 41(05): 223-227.
DOI:10.19554/j.cnki.1001-3563.2020.05.032

摘要

目的实现LCD显示器RGB颜色空间到颜色光谱高效的特征化。方法利用主成分分析法对光谱数据进行降维处理以及借助RBF神经网络研究输入变量数据范围、视觉加权函数和颜色数量对特征化模型的精度影响。结果主成分个数为6时可以很好地保留光谱原来的信息;输入变量范围为0到2.55,CIE1931视觉函数作为加权函数,颜色数量为364时特征化精度高,客观验证99个颜色转换的平均色差为0.36,最大色差为1.59,总样本的平均色差为0.17。结论输入变量数据范围对模型影响最大,视觉加权函数和颜色数量次之,因此在特征化时要考虑输入变量范围、视觉加权函数和颜色数量,这样可以提高模型的精度。文中提出的模型是一种精度较高的特征化模型,具有一定实际应用价值。