摘要
为提高插电式混合动力客车(plug-in hybrid electric bus,PHEB)的燃油经济性,文章提出了一种基于工况识别的PHEB能量管理策略。首先运用主成分分析(principal component analysis,PCA)和模糊C均值聚类法构建代表性城市工况;然后基于学习向量量化(learning vector quantization,LVQ)神经网络进行工况识别,并根据改进动态规划(dynamic programming,DP)算法提炼出全局最优能量分配规则,对能量管理策略进行优化;最后基于AMESim和Simulink建立PHEB整车和能量管理策略仿真模型,并在构建的合肥市代表性城市工况下进行仿真分析。仿真结果表明,该文提出的能量管理策略比电量消耗-电量维持(CD-CS)能量管理策略的燃油经济性提高了5.2%。
- 单位