摘要
数据驱动的窃电检测方法主要根据电量及派生指标识别低电量异常,容易受干扰影响误报。利用工商业用户生产经营状态指标大致固定的特点,提出基于生产经营状态识别的窃电二次筛查方法。首先,将检出的低电量异常用户每天的三相功率作为负荷特征,用以标识其当天的用电行为模式及生产经营状态。然后,将每天的负荷特征进行近邻传播聚类。当低电量异常时段负荷特征与正常低电量生产经营状态聚为同类时,认为是用户状态正常转换导致的异常,可排除窃电嫌疑。基于实际窃电数据的测试表明,所提方法可降低误报率。
-
单位中国电力科学研究院有限公司; 长沙理工大学