摘要

在先进工艺下,VLSI布线产生设计规则违例(DRC)的原因十分复杂,这使得全局布线的拥塞度不再能准确地反映DRC的分布。针对这个问题,提出了一种基于深度学习的预测布线违例分布的方法。该方法只使用布局阶段的引脚、线网和宏模块等版图信息作为特征和CSMOTE算法平衡数据集,无需进行全局布线,然后使用卷积神经网络对数据进行训练,最后用训练模型预测M2 short和cut group space布线违例的分布。该方法在一个采用先进工艺的真实工业设计上进行了测试。结果显示,该方法预测M2 short的准确率为93.4%,F1值为0.78;预测cut group space的准确率为92.5%,F1值为0.78。