InAs/InAsSb type-Ⅱ superlattice with near room-temperature long-wave emission through interface engineering

作者:Bo-Wen Zhang; Dan Fang; Xuan Fang*; Hong-Bin Zhao; Deng-Kui Wang; Jin-Hua Li; Xiao-Hua Wang; Dong-Bo Wang
来源:Rare Metals, 2022, 41(03): 982-991.

摘要

Ga-free InAs/InAsSb type-Ⅱ superlattices(T2SL) have extensive application prospective in infrared photodetectors. Achieving higher operation temperature is critical to its commercial applications. Here, a fractional monolayer alloy method was used to grow InAsSb alloy with better controlled alloy composition. The as-grown T2SL gave eleven satellite peaks and a first satellite peak with a narrow full-width-half-maximum (FWHM) of 20.5arcsec (1 arcsec=0.01592°). Strain mapping results indicated limited Sb diffusion through the As-Sb exchange process at the interface. Moreover, unlike interface states caused by the As-Sb exchange effect, this relatively clear interface was distinctive with localized states with higher activation energies of the non-radiative recombination process ((18±1) meV and (84±12) meV at different temperature ranges), which means that this interface state introduced by fractional monolayer alloy growth method can effectively suppress Auger recombination process in T2SL. Through this interface engineering of InAs/InAsSb Type-Ⅱ superlattice, it achieved detective photoluminescence (PL) signal with the center wavelength of 9μm at 250K.