摘要
针对工业流水线上激光扫描工件获得的点云数据的配准问题,提出了一种基于点云数据几何特征改进的点云自动配准新算法。新算法首先根据点云数据中法向量的变化规律选取特征点,作为初始的匹配点集;然后运用一种根据点对间距离约束优化的随机抽样一致(RANSAC)算法对数据初始匹配;并运用k-d tree加速改进的最近点迭代(ICP)算法进行精确匹配;并运用四元数法求得配准参数。分别对提出的新算法、PCA改进算法和经典ICP算法进行了实验,并对实验结果进行了对比。对比结果表明新算法能够实现配准,并显著提高了配准的速度和精度,表明了新算法的有效性,对实际应用具有一定的现实意义。
-
单位长春理工大学; 机电工程学院