摘要

针对模拟电路实际存在的多类故障问题,本文提出一种基于多核多分类相关向量机(Multi-kernel learning multiclass relevance vector machine, MKL-mRVM)的模拟电路故障诊断方法.所提方法能够在故障数据所在的原始特征空间上建立多个非线性核,在构建分类器的同时实现故障特征的约简;同时,基于贝叶斯框架的分类模型还能够给出诊断结果的后验概率.通过两个电路的诊断实验证明了所提方法的优越性和实用性.

  • 单位
    中国人民解放军海军航空工程学院

全文