准确掌握地铁车辆内拥挤程度是提高城市轨道交通服务质量的手段之一。本文在对地铁车辆监控视频图像提取与分析的基础上,提出了一种基于卷积神经网络的车辆拥挤度识别方法。该方法使用车辆监控视频建立了车厢乘客数据集,通过提取视频图像检测区域以及人群特征检测来实现地铁列车车辆拥挤度识别。实验结果表明,所提出的方法检测速度快,能够满足实际应用中实时性要求,三级拥挤度分类识别实验准确度为98%,四级拥挤度分类识别实验准确度为87%,其检测结果可辅助城市轨道交通管理者快速掌握线网实时客流拥挤情况。