摘要
支持向量机参数的选择对建模精度和泛化性能等有着重要的影响,提出量子粒子群优化(QPSO)改进算法优化支持向量机(SVM)参数的方法。该方法首先将混合扰动算子引入QPSO算法中,用于获取平均最优位置,建立一种基于混合扰动算子的QPSO算法改进方法(IQPSO),然后用IQPSO算法的全局优化能力对支持向量机惩罚系数和核参数进行综合寻优,求取最优化参数组合,从而提高支持向量机的求解速度和解的精确性。利用测试函数和UCI测试数据,对IQPSO-SVM进行仿真测试与分类,实验结果表明,IQPSO能获得很好的优化结果,IQPSO-SVM具有较好的泛化性能。
-
单位四川文理学院; 重庆大学