摘要
核函数中保留Dirac函数的原型,形成关于时间的卷积积分,是声学时域边界元法中一种稳定、有效的时间数值积分计算方法 (CQ-BEM)。然而,传统CQ-BEM中卷积积分系数的获取有计算量大、耗时长,且对不同单元需要重新计算的问题,极大地降低了CQ-BEM法计算时域声场的效率。针对传统CQ-BEM积分系数计算效率低的问题,本文利用多项式展开定理给出了待求函数泰勒系数的解析表达与数值计算方法,建立了不同单元间待求系数的转换理论,可以在一次循环迭代内完成不同单元的积分系数的计算,大幅降低了计算量,提高了CQ-BEM方法的声场计算效率。脉动球源数值算例结果表明,在相同要求下,本文方法计算时间较传统方法减少50%以上,相对误差小5个数量级以上,且计算时间随单元数的增长率仅为传统方法的2.34%。因此,本文提出的系数计算方法能够有效提高CQ-BEM方法的时域声场计算效率,拓展了CQ-BEM在大型机电设备时域声场模拟的计算规模。
-
单位上海交通大学; 机械系统与振动国家重点实验室