摘要
为识别矿井Nakagami-m衰落信道下的无线信号调制方式,研究了基于深度学习的端到端调制识别方法。首先对接收端IQ信号提取实部和虚部数据作为数据集,并搭建组合深度神经网络模型(CLDNN)对11种井下无线信号进行识别。仿真结果表明,当信噪比(SNR)为0时,平均正确识别率为75.3%,当SNR为5 dB以上时,平均正确识别率可达到92.4%以上,相比于经典的深度学习调制识别方法,所提出的端到端深度神经网络模型可以更准确识别矿井无线信号。
-
单位通信与信息工程学院; 西安科技大学