为了更好地解决路段行驶时间的短时预测问题,提出并改善了一种基于树的集成算法。针对小时间尺度下交通时变性强这一特性,构建更加鲁棒的梯度提升树(GBDT)以减少突变点的干扰。为了克服偏差-方差窘境,将随机树(RF)与GBDT进行融合,提出RF-GBDT的集成算法,并考虑各种历史旅行时间数据的相关变量以提高模型的可解释性。预测结果表明,与单独的RF或GBDT相比,RF-GBDT具有更好的预测准确度与算法稳定性。