基于改进BP神经网络的列车脱轨系数预测方法

作者:张俊甲; 李延忠; 马增强; 任彬
来源:国防交通工程与技术, 2017, 15(01): 34-37.
DOI:10.13219/j.gjgyat.2017.01.009

摘要

列车运行过程中,脱轨系数过大将对列车运行安全产生影响并伴随脱轨隐患,因而列车脱轨系数的预测对保障列车安全运行至关重要。提出了一种基于改进BP神经网络的列车脱轨系数预测方法,利用轮轨接触横移量、接触角、车轮抬升量、列车速度对脱轨系数进行直接预测。针对传统BP神经网络收敛速度慢、易陷入局部极小值等缺陷,采用附加动量法和自适应学习率相结合的方法对其进行了改进。在ADAMS/Rail中建立车辆模型,通过该模型进行动力学仿真得到轮轨接触参数的数据,用此数据对改进BP神经网络进行验证。试验结果表明改进BP神经网络预测模型在相对误差及迭代次数上有明显改善,初步验证了该方法在列车脱轨系数预测方面的可行性。

全文