摘要
由于不同模态数据之间的异构性以及语义鸿沟等特点,给跨模态数据分析带来巨大的挑战.本文提出了一个新颖的相似度保持跨模态哈希检索算法.利用模态内数据相似性结构使得模态内相似的数据具有相似的残差,从而保证学习到的哈希码能够保持模态内数据的局部结构.同时利用模态间数据的标签,使得来自于不同模态同时具有相同标签的数据对应的哈希码能够紧密聚集在一起.为了进一步提高哈希码的鉴别能力,算法引入线性回归使得投影后的哈希码能够逼近样本的二值标签.在三个公开的不同跨模态检索数据集上的实验结果显示本文算法有较高的平均查准率.
- 单位