摘要
客户分类作为客户关系管理(CRM)的重要管理方法,是企业进行市场营销的重要依据.通过对客户进行分类,有利于对客户价值进行准确评估,方便进行精准营销.本文通过对RFM模型数据集本身潜藏的先验结构化信息进行研究,标记出两组客户数据作为先验类别标记,进而得到两个初始聚类中心.基于传统K-means算法使用自适应方法确定K值和初始聚类中心.引入Must-link和Cannot-link两种约束将类别标记转换为成对约束信息,基于HMRF-KMeans成对约束,引入约束惩罚项和约束奖励项,实现对聚类引导和聚类结果的调整.使用改进的半监督聚类算法(RFM-SS-means)对标准数据集进行了测试,同时使用Food mart数据集对比了RFM-SS-means算法与传统K-means算法、two-steps算法的聚类效果.由实验结果可知,RFM-SS-means的CH系数最大,无需事先确定K值和初始聚类中心,聚类效果良好.
-
单位西南财经大学天府学院