摘要
滚动轴承作为最常见的旋转机械零部件,其服役状态下产生的振动信号具有典型的周期性特征,为充分发挥轴承振动信号的这一特征,提出一种融合变维门控循环单元(GRU)和双向长短时记忆单元(BiLSTM)的神经网络模型,并用于轴承寿命预测。该模型先将原始振动信号分成训练集和测试集,然后将轴承振动信号直接输入到变维GRU层中,由变维GRU层捕获原信号的特征并建立特征间的关联性,然后将预处理后的数据输入到BiLSTM层中,由BiLSTM对轴承寿命进行预测。通过使用试验台数据集进行试验,验证了该模型在轴承寿命预测上具有较高的精度,具有一定的工程指导意义。
- 单位