摘要

针对传统的ReliefF算法仅能处理单标记数据,以及其改进算法没有充分利用样本间相关性等问题,提出一种基于改进ReliefF的多标记特征选择算法。首先使用余弦相似度函数衡量样本特征间的相似程度,利用杰卡德距离度量样本的标记之间的标记相关性,定义样本间相似度函数度量样本在整个样本空间的相似关系。然后,定义样本的同类或异类判别公式,判断随机样本的最近邻同类和异类样本。最后,提出新的特征权值迭代公式改进ReliefF算法,设计多标记特征选择算法。通过平均分类精度、覆盖率、1错误率、排序损失、汉明损失这5种评价指标,在7个公开多标记数据集上分析和测试所提算法的分类性能。实验结果表明所提算法是有效的。