摘要

针对蛋白质相互作用(protein-protein interaction,PPI)网络中存在大量噪声,以及现有关键蛋白识别方法的挖掘效率和预测准确率不高等问题,提出一种基于复合物信息和亚细胞定位信息(united protein complexes and subcellular locallizations,PCSL)来识别关键蛋白质。首先,整合PPI网络的拓扑属性、生物属性和空间属性构建加权网络,以降低PPI网络中噪声的影响,达到提升PPI网络的可靠性的目的;其次,根据复合物信息和空间信息,设计一种衡量蛋白质关键性的度量,从多维角度强化关键蛋白质在PPI中的重要程度;最后,利用基于PPI网络拓扑特性的寻优算法,设计一种新的试探策略,提升挖掘关键蛋白质的效率。PCSL方法应用在DIP(database of interacting protein)数据集上进行验证。实验结果表明,与其他10种关键蛋白质识别方法相比较,该方法具有较好的识别性能,能够识别更多的关键蛋白质。