摘要

针对网络攻击隐蔽性和动态多变的特征,提出一种融合生成式神经网络和深度神经网络的流量异常检测方法,该方法针对网络流量数据不平衡问题,采用生成式神经网络实现样本库的扩充,在此基础上,采用Dense Net实现网络流量多层次特征的提取,该方法通过加强不同层次特征的传递,实现不同层次特征的融合,为网络流量异常识别提供基础。实验表明,本文提出的方法在准确率、召回率、漏检率以及平均处理时间均优于单纯使用CNN或LSTM的方法,因此,本文方法能够有效检测网络异常流量,具有一定的可用性。

  • 单位
    中国移动通信集团终端有限公司