摘要
针对数据治理领域缺乏深层次的主题挖掘,未有效结合机器学习算法开展主题演化研究,无法精准感知数据治理的变化趋势及主题演化规律问题,提出了一种基于LDA模型和关系图谱的数据治理文献主题演化算法。首先,利用LDA模型和层次聚类算法梳理数据治理的核心主题;其次,结合文本特征和群体特征开展主题关系图谱及科研群体发现研究;最后,通过计算主题消融权重实现数据治理主题演化感知分析。实验结果表明,文章提出的方法能有效挖掘数据治理文献的主题,梳理该领域知识的发展态势,确定未来的研究趋势和热点,为数据治理领域的发展提供了理论基础和研究思路。
-
单位贵州财经大学