摘要

文本情感分类是近年来自然语言处理领域的研究热点,旨在对文本蕴含的主观倾向进行分析,其中,基于特定目标的细粒度情感分类问题正受到越来越多的关注。在传统的深度模型中加入注意力机制,可以使分类性能显著提升。针对中文的语言特点,提出一种结合多跳注意力机制和卷积神经网络的深度模型(MHA-CNN)。该模型利用多维组合特征弥补一维特征注意力机制的不足,可以在没有任何先验知识的情况下,获取更深层次的目标情感特征信息。相对基于注意力机制的LSTM网络,该模型训练时间开销更小,并能保留特征的局部词序信息。最后在一个网络公开中文数据集(包含6类领域数据)上进行实验,取得了比普通深度网络模型、基于注意力机制的LSTM模型以及基于注意力机制的深度记忆网络模型更好的分类效果。