摘要
无人机搭载深度神经网络进行自主电力巡检时由于受到设备本身计算能力、电池容量、深度神经网络计算负载的限制,无法独立处理巡检任务中产生的海量图像数据。为解决该问题,提出了一种基于改进混合粒子群算法和匹配理论的无人机电力巡检卸载策略,该策略将系统成本最小化问题分解为深度神经网络计算任务协同分割和边缘服务器选择两个子问题。针对协同分割子问题,基于深度神经网络计算任务的执行流程提出了一种错时传输方法,通过改进混合粒子群算法求解多无人机任务协同分割层。针对边缘服务器选择子问题,定义无人机与边缘服务器各自偏好函数,根据偏好函数通过匹配理论建立两者间的稳定匹配,得到边缘服务器选择策略。仿真结果表明,与其他卸载策略相比,所提策略能有效降低无人机能耗和计算任务处理时延,促进边缘服务器负载均衡。
- 单位