针对复杂环境下人脸图像美感分类准确率低的问题,给出一种适用于人脸图像美感分类的网络模型F-Net。该模型以LeNet-5为基础网络,使用卷积层提取复杂背景下的人脸图像特征,优化网络模型中的参数,改变模型中卷积层和全连接层特征元的数量。结果表明,本文给出的F-Net网络模型在复杂环境背景下的人脸图像分类准确率达到73%,较其他经典的卷积神经网络分类模型相比性能更佳。