摘要

半监督深度神经网络建模方法已被广泛应用于软测量,但基于分层训练的网络在特征提取过程局限于挖掘每层输入的有效信息,忽略了原始输入有效信息的丢失,逐层累积,从而导致原始输入的特征表示准确率低下;另外,缺乏挖掘过程时空相关性,也会导致模型性能退化。提出一种半监督动态深度融合神经网络(Semisupervised Dynamics Deep Fusion Neural Network,SS-DDFNN)方法。该方法在特征提取网络的每层都重构原始输入数据并预测质量变量,通过在预训练损失中使用重构原始输入误差,减小原始输入有效信息的丢失;同时融入注意力机制和t分布随机邻域嵌入提取时空相关信息。应用提取的特征建立门控神经网络质量预测模型。实验结果显示,相较于SAE、GSTAE和SIAE模型,所提方法在脱丁烷塔案例中的预测精度分别提升了2.8%、1.1%和0.9%;在工业聚乙烯生产案例中,分别提升了2.7%、1.0%和0.7%。实验结果验证了所提方法的有效性。

全文