摘要

提出一种融合自适应动态扰动系数和分段可调节搜索策略的飞蛾扑火优化算法(a moth-flame optimization algorithm with adaptive dynamic disturbance coefficient and piecewise adjustable search strategy, ADMFO),求解高维复杂函数优化问题。通过自适应动态扰动系数策略来提高算法的全局搜索能力,避免算法陷入局部最优;通过分段可调节搜索策略来平衡全局探索和局部开发的比重,以此实现更好的寻优策略。对15个单峰和多峰复杂高维基准函数进行寻优实验,与粒子群算法、正弦余弦算法、蝴蝶算法、灰狼算法和其他4种改进算法进行对比。实验结果表明,ADMFO算法具有更好的寻优精度和稳定性。